
SFrame in browsers



SFrame Implementation in browsers
- Can be implemented in native or as JS using insertable streams
- Advantages of a native implementation

- JS does not need raw access to media content
- MediaStreamTrack & RTC constructs are sufficient

- JS does not need raw access to encryption material
- CryptoKey is sufficient

- Browsers can implement further protection
- Browsers keep control of supported algorithms
- Out-of-render-process media encryption/decryption, isolated streams…

- W3C WebRTC WG Consensus
- Define a native SFrame transform that integrates with WebRTC audio/video streams

https://w3c.github.io/webrtc-insertable-streams


Native web SFrame transform
- Can be used standalone in WebRTC

- JavaScript provides the encryption keys

- Can be used with a native key manager
- Key manager generates encryption keys
- JavaScript hands over the keys to SFrame transforms

- Key material does not need to be exposed to JavaScript
- Native Key Manager standardization can be done in parallel

- Integration with WebRTC constructs
- RTCRtpSender/RTCRtpReceiver

- Does not preclude use outside of WebRTC



SFrame packetization
- SFrame is not working with existing SFUs and existing browsers

- SFrame is not compatible with all packetizations in use
- Video packetization in particular

- Need for a generic packetization with non E2E encrypted frame metadata
- Alternative: SFrame post-transform to adapt to codec-specific packetizations

- Might be useful outside SFrame
- JS insertable streams might not generate valid media content

- Anyone working on it or interested in helping start that effort? 

https://w3c.github.io/webrtc-insertable-streams
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Granularity of generic packetization selection?
Need to have negotiation of SFrame using SDP?
Need to expose SFrame use on the wire?



SFrame Authentication Signatures
- Goal is to validate that received content is actually coming from a given user
- Sounds like a good idea but

- 'It is up to the application to decide what to do when signature verification fails'
- Potential breakage with intermediaries (SFU frame dropping), network (packet loss)...
- This might be hard to implement in browsers

- Plus additional buffering or delay requirements

- Question
- What is the threat model? In particular, is the SFU part of the threat? 
- How is SFrame Authentication expected to be deployed?
- Can SFrame authentication use cases be supported differently?

- One key per incoming stream
- 'Who is speaking' information sent as side information
- SFU validating keyId collisions



SFrame and Data Channel
- Data channel can be used for various data

- Audio/Video, messages, application-specific structured data (subtitles, RTC game data…)

- Can SFrame be used with Data Channel
- Spec is transport agnostic
- Spec is currently focused on audio/video

- There does not seem to be blockers for use outside of audio/video

- Is there a use case for SFrame with Data Channel?
- Or other transports like WebSocket, WebTransport...


