
SFrame in browsers



SFrame Implementation in browsers
- Can be implemented in native or as JS using insertable streams
- Advantages of a native implementation

- JS does not need raw access to media content
- MediaStreamTrack & RTC constructs are sufficient

- JS does not need raw access to encryption material
- CryptoKey is sufficient

- Browsers can implement further protection
- Browsers keep control of supported algorithms
- Out-of-render-process media encryption/decryption, isolated streams…

- W3C WebRTC WG Consensus
- Define a native SFrame transform that integrates with WebRTC audio/video streams

https://w3c.github.io/webrtc-insertable-streams


Native web SFrame transform
- Can be used standalone in WebRTC

- JavaScript provides the encryption keys

- Can be used with a native key manager
- Key manager generates encryption keys
- JavaScript hands over the keys to SFrame transforms

- Key material does not need to be exposed to JavaScript
- Native Key Manager standardization can be done in parallel

- Integration with WebRTC constructs
- RTCRtpSender/RTCRtpReceiver

- Does not preclude use outside of WebRTC



SFrame packetization
- SFrame is not working with existing SFUs and existing browsers

- SFrame is not compatible with all packetizations in use
- Video packetization in particular

- Need for a generic packetization with non E2E encrypted frame metadata
- Alternative: SFrame post-transform to adapt to codec-specific packetizations

- Might be useful outside SFrame
- JS insertable streams might not generate valid media content

- Anyone working on it or interested in helping start that effort? 

https://w3c.github.io/webrtc-insertable-streams


SFrame use in browsers
loss/delay
adaptationtransport decode

transport network
adaptation encode

PeerConnection

SFrame

SFrame as JS 
transform

SFrame as 
native transform

Native SFrame 
transform 

embedded in JS 
transform

Granularity of generic packetization selection?
Need to have negotiation of SFrame using SDP?
Need to expose SFrame use on the wire?



SFrame Authentication Signatures
- Goal is to validate that received content is actually coming from a given user
- Sounds like a good idea but

- 'It is up to the application to decide what to do when signature verification fails'
- Potential breakage with intermediaries (SFU frame dropping), network (packet loss)...
- This might be hard to implement in browsers

- Plus additional buffering or delay requirements

- Question
- What is the threat model? In particular, is the SFU part of the threat? 
- How is SFrame Authentication expected to be deployed?
- Can SFrame authentication use cases be supported differently?

- One key per incoming stream
- 'Who is speaking' information sent as side information
- SFU validating keyId collisions



SFrame and Data Channel
- Data channel can be used for various data

- Audio/Video, messages, application-specific structured data (subtitles, RTC game data…)

- Can SFrame be used with Data Channel
- Spec is transport agnostic
- Spec is currently focused on audio/video

- There does not seem to be blockers for use outside of audio/video

- Is there a use case for SFrame with Data Channel?
- Or other transports like WebSocket, WebTransport...


