
Encryption for content 
protection in streaming

SFrame WG - IETF 110
Dr Alex. Gouaillard



Two use cases - Two trust models
- Video Conference

- Client trusted (special case of web apps, see youenn slides)
- KMS trusted



Two use cases - Two trust models
- Streaming

- Clients trusted (special case of webapp, see next slide)
- KMS trusted

----------------------------------------------------------------------------
- Ingest link trusted 
- Media platform trusted (need raw access for transcoding)

----------------------------------------------------------------------------
- Only delivery is encrypted (DRM)
- Encryption is media transport protocol specific.







TRUSTED

TRUSTED



Two use cases - Two trust models
- Streaming

- Ingest link trusted
=> this is changing, many social platforms have moved to RTMPS. It still requires that you 
trust the platform.

- Media platform trusted (need raw access for transcoding)
=> many real-time platforms have a no-transcoding main path, and use simulcast or SVC 
codecs for adaptation.

Question 1: What if I do not trust the platform, and want to use my own keys?

Question 2: What if I want to use current DRM infrastructures with a different 
media transport, like webrtc?



Studio
Capture, 
encoding, 

encryption, 
streaming

Ingest
proxy

Streaming 
endpoint

proxy

Player
Decrypt, 
decode, 
playback

KMS

Studio
Capture, 
encoding, 

encryption, 
streaming

Ingest
Transc.

Streaming 
endpoint

Player
Decrypt, 
decode, 
playback

KMS

Storage

From the sender 
perspective, with the 
current system, the 
platform must be trusted.

In the real time case, 
where ABR is done 
sender side, reusing the 
proposed SFrame + 
insertable frame + Native 
Key Management 
proposed by Apple 
would achieve the same 
content protection (as far 
as delivery is concerned) 
without needing to trust 
the platform.



Devil is in the detail
It’s likely more complicated than it seems.

There is the question of secure playback.

But there is something doable, and we will spend some time investigate anyway.

If anybody is interested, please join the effort.


