draft-barnes-mis-sframe®

Richard Barnes
Raphael Robert

* https://github.com/bifurcation/draft-barnes-mis-sframe



The hard part is always key management

SFrame defines how you encrypt a media payload

What security properties you get from that encryption depends on how the
encryption keys are managed

Traditional RTC key-management (SDES, DTLS-SRTP) has addressed 1:1

Lots of use cases nowadays are N:N ~ conferencing



MLS

MLS provides continuous group authenticated key exchange with FS / PCS

Authenticated key agreement - Makes a key known only to identified parties
Group - Arbitrary number of parties in the group
Continuous - Members can join and leave the group

Forward Security - Recovery



The Shape of MLS [out of scope for SFrame]

KeyPackage
Add Remove
Commit | Welcome Commit
Joiner

Leaver



Mapping MLS outputs to SFrame inputs

SFrame needs: lookup key(KID) -> Key
MLS produces a new key per batch of adds/removes/updates (“epoch”)
... from which we need to derive a key per member in the group (“sender”)
So we need:
Scheme for creating sender keys from MLS epochs

Encoding of (epoch, sender ID) tuple into KID



Epoch N-1

Join*
Leave*

Epoch N

Join*
Leave*

A4

Epoch N+2

|




Epoch N-1

— b

Export

Join*
Leave*

sframe_epoch_secret_[N-1]

Epoch N

—»

Export

index

v

sframe_epoch_secret_[N]

—> sender_base_key

Join*
Leave*

A4

Epoch N+2

—»

Export

sframe_epoch_secret_[N+2]

|



Epoch N-1

Export

Join*
Leave*

Epoch N

—>\Expon

Join*
Leave*

A4

Epoch N+2

*<Ex,,m\

|

KID = Epoch + sender 1D

sframe_epoch_secret_[N-1]

index

v

sframe_epoch_secret_[N]

»
>

—> sender_base_key

sframe_epoch_secret_[N+2]




Lossy compact encoding

Epochs in MLS are identified by an 8-byte counter. Heavy!
For compactness: Truncate the epoch to E bits (value of E agreed by members)

E = 4-8 probably sufficient for most cases, esp. with batched key rotation

KID = (sender index << E) + (epoch % (1 << E))
sender index = KID >> E

truncated epoch KID % (1 << E)



The draft in three equations

KID = (sender index << E) + (epoch % (1 << E))

sframe epoch secret = MLS-Exporter ("SFrame 10 MLS", "", AEAD.Nk)
sender base keyl[index] = HKDF-Expand(sframe epoch secret,

encode big endian(index, 4), AEAD.Nk)



the-draft.hpp (github.com/cisco/sframe)

class MLSContext : public SFrame
{
public:
using EpochID = uint64_t;
using SenderID = uint32_t;

MLSContext(CipherSuite suite_in, size_t epoch_bits_in);
void add_epoch(EpochID epoch_id, const bytes& sframe_epoch_secret);

output_bytes protect(EpochID epoch_id,
SenderID sender_id,
output_bytes ciphertext,
input_bytes plaintext);
output_bytes unprotect(output_bytes plaintext, input_bytes ciphertext);



Questions for the WG

Does this approach seem generally correct?
An MLS extn could be used to negotiate parameters (cipher, E). Should we?

Should we adopt a draft that defines this approach?



