SFrame E2EE for Video Conferencing

IETF 109 emadomara@google.com

Goals

• Goals

- Security
- Simplicity
- Efficiency
- Transport agnostic

• Non Goals

- Signaling
- Metadata payload format
- Key exchange

Secure Frame

- A new protocol to end-to-end encrypt video conferences
- Encrypt the entire media frame instead of per packet encryption to reduce the overhead
- Transport agnostic as the encryption happens before packetization
- Simple to implement by the client and easy to adopt by existing media backends
- Compatible with existing packets fixing schemas like FEC

SFrame

- Mechanism to efficiently encrypt RTC traffic end to end
 - Encrypts the entire media frame rather than individual packets to minimize the overhead
 - Exposes only the metadata needed by the server to route the streams
 - Individual packets are still HBH encrypted
- SFrame keys are exchanged securely out of band between the endpoints
 - Each user has their own key to encrypt their outgoing traffic
 - Can be used with any KMS like Signal or MLS
 - Keys are exchanged via the signaling channel at the call setup and when the call participants changes
- The server can only access the media metadata but can not access the media contents

Wire Format

SFrame short header

012	34567			
+-+-+-+	-+-+-+-+		-++	÷
S LEN	1 KLEN	<pre>KID (length=KLEN)</pre>	CTR (length=LEN)	
+-+-+	-+-+-+-+		-+	÷

SFrame long header

SFrame payload

Encryption Schema

- Each endpoint creates and securely exchange their master key
- From the master key, SFrame derives 3 keys
 - Encryption key to encrypt the media frame
 - Authentication key to authenticate the encrypted frame. SFrame header and the media metadata
 - Salt key to derive the IV
- The entire payload is then split into smaller packets

SFrame in WebRTC

- SFrame works with existing RTC frameworks like WebRTC
- The encryptor in injected after the frame is encoded and before it is packetized
- Media metadata are passed to the server using a special RTP header extension
- The server can construct the encrypted frame without access the contents

Open Issues

WebRTC Changes

- Changes needed from other WebRTC WG
 - Signaling SFrame
 Signaling the use of SFrame in the SDP
 - RTP payload type
 New RTP payload type for SFrame packets
 - Frame metadata RTP header extension
 New RTP header extension to pass the frame metadata

Signature: Sign or not to Sign?

- To avoid impersonation by a malicious user, the frame needs to be signed
- Signature overhead is significant
- Proposals
 - Sign every N frame (Currently in the document)
 - Every N frame sends a signature over all hashes of the last N Frames
 - Sends the N hashes along the signature
 - Very complex
 - No Signature
 - Prefered
 - Update the document to remove the current signature schema

Partial Frames

- Some codecs like H264 uses smaller decodable units (NAL Units)
- The current specs supports only full frame
- Recipients won't be able to decode the smaller unit until the entire frame is delivered and decrypted
- Proposal
 - Add support to encrypt partial frames
 - Increase the overhead but adds more flexibility

Thank You!